On $A$-statistical convergence and $A$-statistical Cauchy via idea

نویسندگان

چکیده

In [Analysis 1985, 5 (4), 301-313], J.A. Fridy proved an equivalence relation between statistical convergence and Cauchy sequence. this paper, we define $A^{I^{\ast }}$-statistical find under certain conditions, that it is equivalent to $A^{I}$-statistical defined in [Appl. Math. Lett. 2012, 25 733-738]. Moreover, $A^{I}$- sequences some with convergence.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On I-statistical Convergence

In the present paper, we investigate the notion of I -statistical convergence and introduce I -st limit points and I -st cluster points of real number sequence and also studied some of its basic properties.

متن کامل

On statistical type convergence in uniform spaces

The concept of ${mathscr{F}}_{st}$-fundamentality is introduced in uniform spaces, generated by some filter ${mathscr{F}}$. Its equivalence to the concept of ${mathscr{F}}$-convergence in uniform spaces is proved. This convergence generalizes many kinds of convergence, including the well-known statistical convergence.

متن کامل

On $I$-statistical and $I$-lacunary statistical convergence of order $alpha$

In this paper‎, ‎following a very recent‎ ‎and new approach‎, ‎we further generalize recently introduced‎ ‎summability methods‎, ‎namely‎, ‎$I$-statistical convergence and‎ ‎$I$-lacunary statistical convergence (which extend the important‎ ‎summability methods‎, ‎statistical convergence and lacunary‎ ‎statistical convergence using ideals of $mathbb{N}$) and‎ ‎introduce the notions of $I$-statis...

متن کامل

Statistical quasi-Cauchy sequences

A subset E of a metric space (X, d) is totally bounded if and only if any sequence of points in E has a Cauchy subsequence. We call a sequence (xn) statistically quasiCauchy if st − limn→∞ d(xn+1, xn) = 0, and lacunary statistically quasi-Cauchy if Sθ − limn→∞ d(xn+1, xn) = 0.Weprove that a subset E of ametric space is totally bounded if and only if any sequence of points in E has a subsequence...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Carpathian Mathematical Publications

سال: 2022

ISSN: ['2075-9827', '2313-0210']

DOI: https://doi.org/10.15330/cmp.14.2.442-452